Mechanisms of plasmin-catalyzed inactivation of factor VIII: a crucial role for proteolytic cleavage at Arg336 responsible for plasmin-catalyzed factor VIII inactivation.
نویسندگان
چکیده
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.
منابع مشابه
Proteolytic interactions of factor IXa with human factor VIII and factor VIIIa.
Factor IXa was shown to inactivate both factor VIII and factor VIIIa in a phospholipid-dependent reaction that could be blocked by an antifactor IX antibody. Factor IXa-catalyzed inactivation correlated with proteolytic cleavages within the A1 subunit of factor VIIIa and within the heavy chain (contiguous A1-A2-B domains) of factor VIII. Furthermore, a relatively slow conversion of factor VIII ...
متن کاملSequences flanking Arg336 in factor VIIIa modulate factor Xa-catalyzed cleavage rates at this site and cofactor function.
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the prim...
متن کاملProteolytic processing of human coagulation factor IX by plasmin.
Previous studies have shown that thrombin generation in vivo caused a 92% decrease in factor IX (F.IX) activity and the appearance of a cleavage product after immunoblotting that comigrated with activated F.IX (F.IXa). Under these conditions, the fibrinolytic system was clearly activated, suggesting plasmin may have altered F.IX. Thus, the effect(s) of plasmin on human F.IX was determined in vi...
متن کاملTHE ROLE OF VARIOUS STABILIZERS IN THE ACQUISITION OF THERMO-TOLER ANCE IN FACTOR VIII ACTIVITY
We prepared a highly purified and relatively heat stable form of factor VIII which contained 25 units per mL (u/mL) activity using PEG-4000 and developed an effective and new manufacturing process. Heat treatment was performed at 80°C for 72 hrs in the presence of different stabilizers. In our studies, we used different organic solvents as preservatives to maintain factor VIII activity, sin...
متن کاملDoes plasmin have anticoagulant activity?
The coagulation and fibrinolytic pathways regulate hemostasis and thrombosis, and an imbalance in these pathways may result in pathologic hemophilia or thrombosis. The plasminogen system is the primary proteolytic pathway for fibrinolysis, but also has important proteolytic functions in cell migration, extracellular matrix degradation, metalloproteinase activation, and hormone processing. Sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 8 شماره
صفحات -
تاریخ انتشار 2007